MATLAB

Script and Function Files,

Plotting capabilities.

Prepared for

Chemical Engineering Department.

Fall 2000

Prepared by.

Omega-Chi-Epsilon.

Chemical Engineer’s Honors society.

Paul J. Sacoto,

Revised and Updated Andres M. Cardenas-Valencia.

Chemical Engineering Department

University of South Florida.

OCE Matlab Help Session # 2

The subjects that will be covered in this section are:

1) Review in using the workspace

2) Simple Script

3) Function Files

4) 3-D Plotting and related commands

The Tutorial will be covered using an example encountered in reaction engineering:

Case Study: Rate Constant dependence with temperature.

Let’s say for instance you would like to evaluate the first order rate-constant at a number of different temperatures. The Arrhenius expression for the rate constant is as follows:

k(T) = A e-E/RT

Where the numerical value of the constants is:

E=53.6 cal/mol

A=1.5 s-1
R=1.987cal/mol K

The reaction will be subjected to temperature changes that vary from 200 to 400 K. Let’s say we want to find and plot how the rate constant varies with the temperature. This can be done in matab in a number of ways.

1) Using the workspace.

This is the simplest way to use matlab, entering the values of the constants and then type the numerical operations (formulas) to obtain the result.

» A=1.5;E=53.6;R=1.987;T=200:10:400;

» k=A*exp(-E./(R*T));

» plot(T,k,'>');xlabel('Temperature, K');ylabel('Rate constant, 1/sec');Title('k vs T')

The Figure you will obtain will look as follows:

[image: image1.emf]200 220 240 260 280 300 320 340 360 380 400

1.3

1.32

1.34

1.36

1.38

1.4

1.42

Temperature, K

Rate constant, 1/sec

k vs T

2) Script files.

If you have to repeat the same procedure a number of times, you could use a script file. Basically what you will be doing is creating a function that allows you to execute a series of commands or instruction isolated from your workspace. The set of instructions (algorithm) are made in this form and then the resulting variables can be place in the workspace of matlab, they are ready to be re-manipulated, plotted or taken as final results. Script and function files are often called m files because their names must always

end with an extension .m

Let's learn how to create a script file, with a very simple sequence of calculations

2.1) First go to file/new/m-file. A new window called matlab editor debugger appears. This is matlab's own script/function editor. It used to be possible to work in notepad in earlier versions of matlab to create m files. Now matlab has its own editor that has a number of special features that allow for easier debugging.

2.2) To give you the basic idea of how easy it is to create this functions, copy all the commands you just typed in the matlab workspace (You need to remove the >>) Your matlab debugger will look like

% This is a script function that calculates the rate constant for example 1

% Created by me today.
% Hola como estan
A=1.5;E=53.6;R=1.987;T=200:10:400;

k=A*exp(-E./(R*T));

plot(T,k,'>');xlabel('Temperature, K');ylabel('Rate constant, 1/sec');Title('k vs T')

Then go to file/save/ex1.m. By doing this you are saving the file with the name ex1

2.3) You are ready to use this script. Now if you return to the workspace, and type ex1, the set of instructions will be performed. Observe what happens…Matlab has just re-executed the set of instructions you just type before.

NOTE: Every-time when this file is executed, every variable defined in a script will update/create the corresponding variable in the workspace, to check this you can clear your workspace and run ex1 again.

3) Function files.

A function file differs from a script file in the sense that it allows you to interact more with the workspace. A function file can not only return variables to the workspace (like the script files) but also can take inputs from it. By doing so, it is possible to create main programs that would handle the interaction of different function files, treating them as subroutines. However, variables are local to the function and do not operate in the workspace unless specified in the function as global variables.

A function file has the following first line:

function [output1,output2,...]=function name(inout1,input2,...)

For example let's take the previous example and make of it a function. Make the following changes

function k=ex2(A,E,T)
% This is a function file that calculates the rate constant for example 2

% NOTICE Its has the option to select the inputs of the equation

% Created by me today.
% Hola como estan
R=1.987;

k=A*exp(-E./(R*T));

plot(T,k,'>');xlabel('Temperature, K');ylabel('Rate constant, 1/sec');Title('k vs T')

and save it as ex2.m.Now you are ready to use this new function which calculates the rate

constant as a function temperature, A and E. Now you can type in the workspace say:

ex2(1,45,600)

ans =

 0.9630

which evaluates k given A=1 s-1, E=45 cal/mol and T=600 K. You can also use vector or matrices for the inputs and outputs as will be illustrated in the following examples.

Example

Can you make a function that will calculate and return the mean and standard deviation of a data vector?

TIP: Type help function, help sum

4) 3-D Plotting and related commands

Suppose now that there is some uncertainty on the parameters you are using for the rate constant example and you would like to get an idea on how that is affecting your estimates: Say that A= 1.5+/- 0.3 and E= 53.6 +/- 3.0. Let’s also say you’d like to see the effects of this uncertainty at T=300 K.

The first thing you’d like to do is generate a plot of this function with A and E variables. This calls for a 3-D plot

Let’s first look at the three possible candidates for 3-D plotting…

SURF,SURFC,SURFL

PLOT3

MESH,MESHC,MESCHZ

WATERFALL

All this functions will enable you to draw 3D figures. For this example let’s make use of the surface plot SURF. You can see what kind of inputs is required for this function by typing “help surf”

SURF 3-D colored surface.

 SURF(X,Y,Z,C) plots the colored parametric surface defined by

 four matrix arguments. The view point is specified by VIEW.

 The axis labels are determined by the range of X, Y and Z,

 or by the current setting of AXIS. The color scaling is determined

 by the range of C, or by the current setting of CAXIS. The scaled

 color values are used as indices into the current COLORMAP.

 The shading model is set by SHADING.

 SURF(X,Y,Z) uses C = Z, so color is proportional to surface height.

 SURF(x,y,Z) and SURF(x,y,Z,C), with two vector arguments replacing

 the first two matrix arguments, must have length(x) = n and

 length(y) = m where [m,n] = size(Z). In this case, the vertices

 of the surface patches are the triples (x(j), y(i), Z(i,j)).

 Note that x corresponds to the columns of Z and y corresponds to

 the rows.

 SURF(Z) and SURF(Z,C) use x = 1:n and y = 1:m. In this case,

 the height, Z, is a single-valued function, defined over a

 geometrically rectangular grid.

 SURF returns a handle to a SURFACE object.

 AXIS, CAXIS, COLORMAP, HOLD, SHADING and VIEW set figure, axes, and

 surface properties which affect the display of the surface.

 See also SURFC, SURFL, MESH, SHADING.

So, from this screen it seems that the least number of inputs we could have are x, y and Z. Where x, y and Z could be all matrices of the same size, or x and y vectors such that the length of x is equal to the number of columns in Z, and the length of y equal to the number of rows in Z.

4.1) First to study the effect of A and E, we can make use of the function we just created. T could be a vector in this function, but if A and E are going to be a vectors too, a slight modification has to be made to out function;

function k=ex3(A,E,T)
%This is a function file that calculates the rate constant for example3

% NOTICE Its has the option to select the inputs of the equation

% AND NOW ALL of them can be matrixes

% Created by me today.
% Hola como estan
R=1.987;

k=A.*exp(-E./(R*T));

All that has been done is add a dot (“.”) After the A, so we can multiply member by member. Also we eliminate the plot command, since will be using a 3 D command to plot in this case. Save this file as ex3.m

4.2) Let’s generate the vectors A and E; and then check their sizes.

» A=1.2:.2:1.8;E=50.6:1:56.6;

» size(A)

ans =

 1 4

» size(E)

ans =

 1 7

Note that A and E do not have the same size as vectors. Our task is to have every element of A used once with every element of E to give a value of k. In other words, we want every combination of A and E to produce a value of k. One way to do this with our function is to make equal sizes matrices out of this, but HOW??

4.3) Conditioning the vectors. The way to make them matrices of the same sizes, in such a way that the data correspond in position, one by one with the values in the rate constant matrix (k), makes use of the matrix, properties.

You multiply say A by a vector of ones of the same length as E; the trick is to do a matrix multiplication so that the dimensions of the resulting matrix are appropriate.

do as follows:

» Am=A'*ones(1,7);size(Am)

ans =

 4 7

» Em=ones(4,1)*E;size(Em)

ans =

 4 7

To see more clearly what you have done, view the vectors in the workspace:

Am =

 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000

 1.4000 1.4000 1.4000 1.4000 1.4000 1.4000 1.4000

 1.6000 1.6000 1.6000 1.6000 1.6000 1.6000 1.6000

 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000

» Em

Em =

 50.6000 51.6000 52.6000 53.6000 54.6000 55.6000 56.6000

 50.6000 51.6000 52.6000 53.6000 54.6000 55.6000 56.6000

 50.6000 51.6000 52.6000 53.6000 54.6000 55.6000 56.6000

 50.6000 51.6000 52.6000 53.6000 54.6000 55.6000 56.6000

 4.4) Running the function. Finally we can now is run the function we just created as follows

» km=ex3(Am,Em,300)

km =

 1.1023 1.1005 1.0986 1.0968 1.0950 1.0931 1.0913

 1.2861 1.2839 1.2818 1.2796 1.2775 1.2753 1.2732

 1.4698 1.4673 1.4649 1.4624 1.4600 1.4575 1.4551

 1.6535 1.6507 1.6480 1.6452 1.6425 1.6397 1.6370

4.5) Plotting. To do it just proceed as follows;

» surf(Am,Em,km)

» xlabel('A, s^-1');ylabel('E, cal/mol');zlabel('k, s-1');

» title('Effect of A and E at a costant temperature')

Now, you can observe the difference between the 3 D plot commands.

Try

MESH,PLOT3,WATERFALL

The figure you will be obtaining is:

[image: image2.emf]1

1.2

1.4

1.6

1.8

50

52

54

56

58

1

1.2

1.4

1.6

1.8

A, s

-

1

Effect of A and E at a costant temperature

E, cal/mol

k, s-1

4.6) Rotating the figure. A very useful command in 3 D plotting is View. It enables you to rotate the figure. The command works in 2 ways, if two inputs are entered matlab treats them as the horizontal and vertical angles of a spherical coordinate system. If three inputs are given they are the coordinates in a Cartesian system and the figure will be move accordingly.

[image: image3.emf]1

1.2

1.4

1.6

1.8

50

52

54

56

58

1

1.2

1.4

1.6

1.8

E, cal/mol

Effect of A and E at a costant temperature

A, s

-

1

k, s-1

EXAMPLE:

Let’s surface plot the following function:

z=sin(x2+y2)/(x2+y2)

Let x=[-(,(] and y=[-(,(]

The following can be done:

» x=-pi:.1:pi;

» y=-pi:.1:pi;

» xm=x'*ones(1,length(y));

» ym=ones(length(x),1)*y;

» zm=sin(xm.^2+ym.^2)./(xm.^2+ym.^2);

» surf(xm,ym,zm)

» xlabel('xm');ylabel('ym');zlabel('zm')

[image: image4.emf]
