MATLAB

An Introduction

Prepared for

Chemical Engineering Department.

Fall 2000

Prepared by.

Omega-Chi-Epsilon.

Chemical Engineer’s Honors society.

Andres M. Cardenas Valencia.

Chemical Engineering Department

University of South Florida.

OCE- Matlab Tutorial, Session 1

This session will be covering the basic essentials in using matlab to solve basic problems. The following is a list of topics that will be cover today along with a helpful introduction to matlab’s basic syntax.

Matlab is a very powerful mathematical program that offers a range of application starting from basic operations to very complex algorithms in a programming platform.

The Matlab environment window can be brought up by clicking in the proper icon (from windows). If you click the right window, The matlab command window should pop out. In there you should be able to write in a generally white screen. In the next section we’ll learn how we can start inputing variables in this command window with which we can start working and doing operations.

1. Matlab’s vector structure

To learn how to use matlab it is proper to start the discussion, pointing out the matrixial structure of matlab. Some programming languages allow the use of arrays of information. Matlab can work in this manner. The purpose of this, is but not means not only to complicate the life of the new user but really it is to FACILITATE A NUMBER OF PROGRAMMING operations. This will be evident to you as we progress in these tutorials.

The first thing is show you how to input variables in matlab, as mentioned before, this variables can be matrixes as well as vectors or scalars. The other thing you should keep in mind, (and it would become sutine after you are familiar with matlab) is that the execution, or run key after we enter any command in matlab is the ENTER key.

To enter a data vector, you just type the name of the variable, and tell matlab to what is equal to, the vectors and matrixes should be entered between brackets).

a=[1 2 3 4 5 6 7 8 9], this could have been input as

a=[1 2 3 4 5…

6 7 8 9]

This can be done if the data is too long and you want to see it without scrolling left in the screen.

Matlab is case sensitive that is a variable called a can be different than A.

After you enter a variable matlab will save it in memory until it is deleted (or windows crashes, hehe). To see the variable, the command to display is disp

»disp(a)

 1 2 3 4 5 6 7 8 9 10; or directly typing,

» a

a =

 1 2 3 4 5 6 7 8 9

Another form to input this type of vectors, is

»a=2:1:10;

Notice that by the use of the semicolon, “;” matlab prevents the display of the variable. Also notice that in this case the original vector a has disappeared from the memory.

 So, BE CAREFUL with the names of variables. Once you overwrite a vector you WON’T BE able to recover it.

The structure of this last form of creating a vector is as follows: The first element here, i.e. “2” is the starting point of the vector. The “1” is the step size, that is the second number will be 2+1, the third would be the second plus 1, and so on. In this case, the step size can be omitted, since matlab has the number 1 for default. The reader can probably guess that the “10” in here is the last element.

To input a matrix the rows has to be ended by the use of semicolons

»B=[1 2 3; 4 5 6; 7 8 9]

B =

 1 2 3

 4 5 6

 7 8 9

Something very neat about MATLAB, is that it has a memory! Yes, the program “remembers” the last of commands that were input so they can be use to ease future work. To bring up the last command lines in the screen the up and down arrow keys to the right of the keyboard can be used.

(
(
In the latest versions of matlab, not only it remembers certain number of commands (the amount of lines stroed in memory, depends on the version and capability of your computer), but also you can browse specific commands you have used in a session, if you start writing the first letters of a specifi command matlab would browse for something similar alphabetically.

For instance, in our session today the only command we have used is disp, if we type

» d and the (, upt arrow key, matlab itself would bring up;

» disp(a), if we press enter, the vector would be displayed.

Parenthesis can be used in matlab to select “sections” of a variable, that is the columns or vectors of a matrix by specifying the rows or columns.

If we type B(1,2) that would give us the value of the element in the first row and second column.

» B(1,2)

ans =

 2

Let’s suppose for the heck of practicing that we messed up when inputing the vector B; and forgot to add one more row. We have several ways to do this;

Fisrt we can just bring back the command line by using the arrow keys, (so we don’t have to type again)

» B=[1 2 3; 4 5 6;7 8 9], and before hitting enter add the remaining elements

» B=[1 2 3; 4 5 6;7 8 9;10 11 12];

Another way to do this is by the use of colon. In matlab the colon key, “:” without numbers next to it selects the whole range; if we type;

» B(4,:)=[10 11 12]

We are telling matlab that the fourth row of the matrix B will be equal to 10, 11 and 12.

We can specify ranges in the elements we are choosing, for instance, if we use the colons (in this case to delimitate a range),

»B(2:4,2:3),

We can obtain then the submatrix;

ans =

 5 6

 8 9

 11 12

The last general command for vector matrix manipulation we will be mentioning today is the apostrophe. For a vector this would change a row vector to a column vector.

» b=a'

b =

 2

 3

 4

 5

 6

 7

 8

 9

 10

Transposing a matrix, would interchange the rows for the columns, and vice-versa.

2. Simple Matrix Operations

There are some commands already built in the matlab structure that simplifies the programming of the matrixes structures. These commands are:

ones.

This command generates vectors/matrixes with ones.

» ones(4,3)

ans =

 1 1 1

 1 1 1

 1 1 1

 1 1 1

A similar command to this is the zeros command. That will be return matrixes whose elements are zeroes.

size.

This command gives the size of the matrix that is the number of rows and vectors.

Length. In this case we will assign the outputs of this command to other variables, m and n.

» [m,n]=size(B)

m =

 4

n =

 3

det.

This command would give the determinant of a matrix. Let’s try to use for our matrix B.

» det(B)

??? Error using ==> det

Matrix must be square.

UPPS! It didn’t work and matlab told us why. The determinant of a matrix is only specified for a square matrix.

So let’s create a square matrix, using the command we just learned.

» S=ones(5)

S =

 1 1 1 1 1

 1 1 1 1 1

 1 1 1 1 1

 1 1 1 1 1

 1 1 1 1 1

The determinant can be obtained then

» det(S)

ans =

 0

trace and diag.

Two very important commands for tensor analysis. Irectly related to the invariants of a matrix. The first give us the trace (that is the sum of the main diagonal elements of a matrix. The second gives us the main diagonal elements of a matrix. For instance;

» trace(S)

ans =

 5

and

» diag(B)

ans =

 1

 5

 9

2.Work Space information

Before continuing, a parenthesis will be done in some very useful commands to get you started in matlab. They will be described one by one by the instructor, and it is recommended for the listener to take your own notes.

disp

who

whos

path,what

help

lookfor

clear

clc

3. Simple math operations

So far we know how to input variable and retrive them. Now we can start doing some basic math operations.

1) (+ -)

We can start by adding a number to a variable:

» c=5;d=7;c+d

ans =

 12

First we are defining 2 escalars, c and d and finally we sum them to give us the variable e.

If we add/substract a scalar from a vector the number would be added/substracted to/from all the elements in the vector

» e=a+d

e =

 9 10 11 12 13 14 15 16 17

Operating two vectors/matrixes of the same size (the size is specified by the number of rows and columns). Would add/substract term by term, i.e. would sum or rest each element from each element.

» f=e+a

f =

 11 13 15 17 19 21 23 25 27

2) (* / and .* ./)

First we will introduce the operation element by element. That is if we want to divide elemet by element two of the vectors (that could be matrixes) we have to use a point before the * or / operator signs. For example;

» f.*a

ans =

 22 39 60 85 114 147 184 225 270

» e./a

ans =

 Columns 1 through 7

 4.5000 3.3333 2.7500 2.4000 2.1667 2.0000 1.8750

 Columns 8 through 9

 1.7778 1.7000

Now, the use of solely the operators *, / (without the point preceding them), would indicate matlab to do a matrix operation. REMEMBER the rules to operate matrixes:

When multiplying 2 matrixes A and B, the number of columns of A has to be equal to the number of rows of B. The resulting matrix C will have then the number of rows of A and the number of columns of B. Let’s do and example:

» size(B)

ans =

 4 3

Let’s generate a matrix of ones, in order to be able to multiply it with B, the size has to be congruent;

» A=ones(2,4)

A =

 1 1 1 1

 1 1 1 1

C=A*B

C =

 22 26 30

 22 26 30

The division between matrixes as defined by matlab is the multiplication of the inverse of the denominator. Since the purpose of this tutorial is not matrix manipulation the reader is just left with this thought.

Some other interesting/useful commands are:

sum

sqrt

exp,log,log10

rnd,randn

mean

Again, it is suggested that the reader take notes about this individually.

3. 2D Plotting

The basic command for 2D plotting in matlab is, (any guesses?):

plot

The format for using this command can be illustrated using the following example:

Let’s create a vector with values from 0 to 4(, with equally spaced elements separated by a tenth of (. » z=0:pi/10:4*pi;

Now to make a plot of z versus the sine of this variable we can write:

» plot(z,sin(z))
[image: image1.wmf]0

2

4

6

8

10

12

14

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

For additional information on this command and to make the graph look complete and personalize, we can inquire the help in this specific command.

Instead of using a line, “dots” can be used to mark the data points.

Other markers can be used as: ‘*’, ‘#’,’-‘,’- -‘,etc.

If we wanted both dots and lines double markers could be used as’o-’. Furthermore, the color of the markers/line can be also be modified by entering the first letter of the wished color in the marker. R, is used for red, g for green, m for magenta, y for yellow, etc.

For instance;

» plot(z,sin(z),’ro’)

After one plot has been done the following commands can be used to modify it:

xlabel

ylabel

title

color

legend

gtext

grid

A specific plot can be saved in an executable command by choosing to save the figure.

To continue learning a little more about this plot command, let’s crate the following matrixes:

» X=[0:9;2:2:20];

» Y=[3:3:30;4:4:40];

To plot more lines in the same figure, we can use the same structure used before, repeating the x-axis and y-axis input for instance;

» plot(X(1,:),Y(1,:),X(2,:),Y(2,:))

An easier way to do this is

» plot(X',Y')

Notice that the columns are the different series plotted, and that’s why the apostrophe has to be used to transpose the matrixes. In both cases the figure obtained is:

[image: image2.wmf]0

5

10

15

20

0

5

10

15

20

25

30

35

40

